You are currently browsing the category archive for the ‘Medicine’ category.

Reason 1: Historical Cases of Investigator-Participation in Pain Research

In the early twentieth century, scientists commonly viewed self-experimentation an essential part of medical research. Self-exposure to untested interventions was believed the most ethical way to assess human responses to those interventions, and to catalyse further research (Dresser 2013). Some of this research helped to found new scientific fields. Respiratory physiology was one such field, formed in the 1920s through self-experiments conducted by scientist John Haldane and colleagues. In 1984, physician Barry Marshall ingested Helicobacter pylori, which helped to establish the link between H. pylori and gastric pathology, and in 1992, self-experiments conducted by Mike Stroud and Ranulph Fiennes in Antarctica advanced understanding of nutrition in extreme conditions.

Self-experiments to study pain experience have been published by Sir Head (1920), Woollard and Carmichael (1933), Landau and Bishop (1953), Price (1972), Price et al. (1977), and Staud et al. (2001, 2008), to name only a few significant investigator-participants who studied pain. William Landau and George H. Bishop conducted standard psychophysical research on themselves to study the qualitative differences between “first pain” and “second pain” (i.e. “double pain”; later termed epicritic and protopathic pain) (Landau and Bishop 1953). Initially, Landau and Bishop identified through introspection the differential experiential qualities between first and second pain, followed by scientifically informed speculation about the mechanistic difference between the two types of pain. They discovered that first pain was sharp or stinging, well localized, and brief, whereas second pain was dull, aching, throbbing, or burning, and poorly localized, and longer lasting. The qualities of second pain were felt when skin C-nociceptors were stimulated.

These findings were subsequently confirmed by Price (1972) based on researcher and naïve participant introspective reports. Temporal differences between first and second pain were introspected on and mechanistically explained in terms of central temporal summation in studies by Price et al. (1977), and Staud et al. (2001, 2008), using investigator- and naïve-participants.

Conducting self-experiments to study referred pain, collaborators Herbert Woollard and Edward Carmichael observed that 300 g of weight placed on the right testicle produced slight discomfort in the right groin, while 650 g on the right testicle caused severe pain on the right side of the body. They confirmed that injury to the testicles caused pain to be referred throughout the body. For instance, as the weight on the testicle increased to over 900 g, they reported pain “of a sickening character” not only in the groin but also spreading across the back (Woollard and Carmichael 1933).

Self-experimentation on pain has on occasion led to surprising results. The psychologist B. Berthold Wolff self-experimented in his pain psychophysics laboratory, varying thermal pain which was produced at that time by briefly shining a strong light on a spot on the forearm blackened with candle black for a calibrated time and intensity of exposure (Hardy et al. 1940). On one occasion, Wolff pushed the button to deliver the noxious stimulus, but then something unexpected happened: he screamed with pain, which was brief but intense and filled his whole body. He described it as the most intense whole-body pain he had ever experienced. Wolff later discovered that the light stimulus had been knocked off its correct aim, and had missed his forearm altogether and instead diffused onto the opposite wall where it created a very strong flash of light throughout the normally dark room. Wolff speculated that, as he was expecting to feel pain, the unexpected flash of strong light had the same effect, producing an experience of pain.

It is unclear if investigators today independently conduct self-experiments or co-participate in their own pain studies. The convenience of recruiting participants from university classes and the internet may have made self-experimentation or co-participation of pain seem somewhat redundant to researchers. The Declaration of Helsinki advises on conducting ethical research using patients and healthy volunteers, although it is unclear if this is reason enough for challenging independent self-experimentation or investigator co-participation. In self-experiments, the researcher is both investigator and single participant, so the requirement for informed consent could be waived. Still, there is clear historical precedent for scientific investigators successfully observing and analyzing their own experiences of pain. The results of such published self-experiments have been integrated into the body of knowledge of pain, and replicated in numerous studies using naïve participant introspective reports and standard scientific methods.


Dresser R (2013) Personal knowledge and study participation. J Med Ethics. doi:10.1136/medethics-2013-101390.

Hardy JD, Wolff HG, Goodell H (1940) Studies on pain: a new method for measuring pain threshold: observations on spatial summation of pain. J Clin Investig 19(4):649–657.

Head H (1920) Studies in neurology. Oxford University Press, London.

Landau W, Bishop GH (1953) Pain from dermal, periosteal, and fascial endings and from inflammation: electrophysiological study employing differential nerve blocks. AMA Arch Neurol Psychiatry 69(4):490–504.

Price DD (1972) Characteristics of second pain and flexion reflexes indicative of prolonged central summation. Exp Neurol 37(2):371–387.

Price DD, Hu JW, Dubner R, Gracely RH (1977) Peripheral suppression of first pain and central summation of second pain evoked by noxious heat pulses. Pain 3(1):57–68.

Staud R, Vierck CJ, Cannon RL, Mauderli AP, Price DD (2001) Abnormal sensitization and temporal summation of second pain (wind-up) in patients with fibromyalgia syndrome. Pain 91 (1):165–175.

Staud R, Craggs JG, Perlstein WM, Robinson ME, Price DD (2008) Brain activity associated with slow temporal summation of C-fiber evoked pain in fibromyalgia patients and healthy controls. Eur J Pain 12(8):1078–1089.

Woollard HH, Carmichael EA (1933) The testis and referred pain. Brain 56(3):293–303.


Cohen M, Quintner J, van Rysewyk S (2018). Reconsidering the IASP Definition of Pain. Pain Reports, 3(2).


Introduction: The definition of pain promulgated by the International Association for the Study of Pain (IASP) is widely accepted as a pragmatic characterisation of that human experience. Although the Notes that accompany it characterise pain as “always subjective,” the IASP definition itself fails to sufficiently integrate phenomenological aspects of pain.

Methods: This essay reviews the historical development of the IASP definition, and the commentaries and suggested modificationsto it over almost 40 years. Common factors of pain experience identified in phenomenological studies are described, together with theoretical insights from philosophy and biology.

Results: A fuller understanding of the pain experience and of the clinical care of those experiencing pain is achievable through greater attention to the phenomenology of pain, the social “intersubjective space” in which pain occurs, and the limitations of language.

Conclusion: Based on these results, a revised definition of pain is offered: Pain is a mutually recognizable somatic experience that reflects a person’s apprehension of threat to their bodily or existential integrity.

Associated Commentaries:

Osborn M. Situating pain in a more helpful place. PAIN Reports 2018:e642.

Treede RD. The IASP definition of pain: as valid in 2018 as in 1979, but in need of regularly updated footnotes. PAIN Reports 2018:e643.

Download a copy of the paper here.

161214_Meanings of Pain_Cover

van Rysewyk S (2016). Meanings of Pain. Springer International Publishing AG: Switzerland.

  • First book devoted to study of the meanings of pain
  • Explains why meaning is important in the way that pain is felt
  • Promotes integration of qualitative and quantitative research methods to study meanings of pain
  • Includes insights that can aid in the clinical management of patients with pain

About Meanings of Pain

Although pain is widely recognized by clinicians and researchers as an experience, pain is always felt in a patient-specific way rather than experienced for what it objectively is. This fact makes perceived meaning important in the study of pain. The book contributors explain why meaning is important in the way that pain is felt and promote the integration of quantitative and qualitative methods to study meanings of pain. For the first time in a book, the study of the meanings of pain is given the attention it deserves.

All pain research and medicine inevitably have to negotiate how pain is perceived, how meanings of pain can be described within the fabric of a person’s life and neurophysiology, what factors mediate them, how they interact and change over time, and how the relationship between patient, researcher, and clinician might be understood in terms of meaning.

Though meanings of pain are not intensively studied in contemporary pain research or thoroughly described as part of clinical assessment, no pain researcher or clinician can avoid asking questions about how pain is perceived or the types of data and scientific methods relevant in discovering the answers.

Reviews of Meanings of Pain

“Meanings of Pain offers an intriguing investigation into the implications of the psychological, sociological, and personal lived meanings of pain for the overall management of patients struggling with this chronic condition. … it may prove invaluable to the physician struggling to understand the intricacies of the patient pain experience, facilitating improved comprehensive pain therapy.” (Emily E. Smith-Straesser and Amanda M. Kleiman, Anestesia & Analgesia, Vol. 125 (5), November, 2017)

Pain Science and Sensibility Episode 29: Discussion of the book “Meanings of Pain”

Meanings of Pain – Book Review by Josie Billington (University of Liverpool), Andrew Jones, and James Ledson (The Royal Liverpool and Broadgreen University Hospitals NHS Trust)

Meanings of Pain – Book Review by Christin Bird

The Science and Philosophy of the Meaning of Pain – Review of Chapter 7, “A Scientific and Philosophical Analysis of Meanings of Pain in Studies of Pain and Suffering” in Meanings of Pain by Smadar Bustan – by Tim Cocks

Meanings of Pain – Book Review by Asaf Weisman

N=1 as a reference for general concepts of experiencing pain by Morten Høgh

New Developments

Springer is considering publishing Meanings of Pain in a multiple volume series. Watch this space for an update on this development.










How does the physical growth of the fetal brain relate to pain function? Addressing this question is not just of research interest, but has profound consequences in guiding clinical use of analgesic and anesthetic intervention for in utero surgery. Adult brains appear structurally and functionally specialized for types of pain; for example, acute pain preferentially engages medial prefrontal cortical and subcortical limbic regions [1,2]. However, the question of the relationship between such specializations and pain is still controversial in the debate concerning fetal pain [3, for review]. One ‘maturational’ perspective is that brain growth and pain function co-develop through innate genetic and molecular mechanisms, and that postnatal experience merely has a role in the final ‘fine tuning’ [4,5,6,7]. Evidence concerning the differential neuroanatomical development of brain regions is used to determine a lower gestational age when particular regions likely become functional for pain. Several authors claim that maturation within subcortical brain regions enables pain function as early as 20 weeks gestation [6,7], others claim expansion of thalamocortical regions at 24 weeks is necessary and sufficient. An alternative ‘expertise’ view is that brain development and pain function involve a prolonged process of co-specialization that is shaped by postnatal experience [3,8,9,10]. Based on this approach, some authors argue that the fetal brain is not functional for pain at any gestational stage because skills such as sense of self and mind-reading learnt in postnatal life are necessary for pain [3,8,9,10].

Maturational views of functional brain development assume that brain growth and the appearance of functions are equivalent or the same thing, in the way that water and H2O are equivalent or the same thing, which implies that concerning the question of fetal pain, the sequential coming ‘on-line’ of specific brain regions during fetal development is identical with the appearance of pain function. That is, pain function numerically shares all its properties or qualities with the brain. Things with qualitative identity share properties, so things can be more or less qualitatively identical. Apples and oranges are qualitatively identical because they share the quality of being a fruit, but two apples have greater qualitative identity. Maturational views of fetal pain demand more than this, however, since they imply numerical identity. Numerical identity implies total qualitative identity, and can only hold between a thing and itself. This means that a maturational view of fetal pain makes a very strong demand about pain capacity: specific brain regions and pain function co-develop in the fetus because they are numerically identical, one and the very same thing. Pain is in the brain.

Expertise views of fetal pain challenge the core maturational commitment of brain-pain numerical identity and present philosophical arguments and data which claim instead to show the non-identity of brain-pain relationships in the fetus and the necessity of postnatal experience and learning [3,8,9,10]. A representative philosophical argument driving expertise views of fetal pain is the following: All pains are personal experiences and therefore entirely subjective; All brains are physical objects and therefore entirely objective; There is a fundamental divergence between pain and the brain. Therefore, pain cannot be numerically identical to the brain. Thus, the argument:

1. Pains are subjective.

2. Brains are objective.

Therefore, since pains and brains fundamentally diverge,

3. Pain is not numerically identical to the brain.

I will now critically examine and discuss this argument. Take the first premise: ‘pains are subjective.’ On a reasonable interpretation of its meaning, to say that ‘pains are subjective’ is to say that pains are knowable by direct personal experience. However, since brain events such as brain growth are not knowable by direct personal experience, pains cannot be one and the same thing as brain events. Here is the argument:

1. Pains are knowable to me by direct personal experience.

2. Brain events are not knowable to me by direct personal experience.

Therefore, since pains and brains fundamentally diverge,

3. My pain is not numerically identical to my brain.

Once the argument is represented in this form, it is clear that it is fallacious. This can be observed if we compare the argument with the following example:

1. Ibuprofen is known by me to relieve pain.

2. Iso-butyl-propanoic-phenolic acid is not known by me to relieve pain.

Therefore, since ibuprofen and iso-butyl-propanoic-phenolic acid fundamentally diverge,

3. Ibuprofen cannot be identical to iso-butyl-propanoic-phenolic acid.

The premises in the example are true, but the conclusion is known to be false. The argument is fallacious because its core assumption – ‘fundamental divergence’ – is mistaken: it mistakenly assumes that a thing must be known by somebody somewhere. But the property ‘being known by somebody’ is not a necessary feature of anything, much less a property that might establish its identity or non-identity with something otherwise known. The truth of the premises may be due to nothing else but my ignorance of what turns out to be identical with what. This point entails that ‘being known by somebody’ is not a necessary feature of pain that might explain its identity or non-identity with the brain. The non-identity of fetal brain development and pain function cannot be established by this argument.

The argument needs to produce independent evidence for the idea of ‘fundamental divergence’, since it is not self-evident. To illustrate this point, consider the argument for pain-brain numerical identity that personal pain would have no influence on mammalian behaviour were it not numerically identical with brain events [11]. This apparently simple argument wasn’t established until fairly recently because a crucial premise was not available. This is the premise that physical effects like pain are determined by prior physical causes. This is an empirical premise, and one which scientific theories of pain didn’t take to be fully evidenced until the middle and late twentieth century [12, for review]. It is this evidential shift, and not the apparently obvious, which is responsible for the argument’s persuasive power. It remains to be seen if stronger evidence for pain-brain identity in the fetus is forthcoming.

Of course, the failure of this particular argument to establish its conclusion does not thereby abolish the expertise perspective and self-guarantee its opposite, the maturational perspective, or even prove that the two perspectives are mutually exclusive. Rather, what the failure of the argument shows is that apparently obvious logic is sometimes a poor guide to reality. Whether pain-brain identity is true or false is impossible to tell simply by arguing personal appearances.


[1] Apkarian AV, Hashmi JA, Baliki MN. Pain and the brain: specificity and plasticity of the brain in clinical chronic pain. Pain 2011; 152(3 Suppl): S49–S64.

[2] Wager TD, Atlas LY, Lindquist MA, Roy M, Woo CW, Kross E. An fMRI-based neurologic signature of physical pain. New England Journal of Medicine 2013; 368(15): 1388–1397.

[3] Derbyshire SWG, Raja A. On the development of painful experience. Journal of Consciousness Studies 2011; 18: 9–10.

[4] Anand KJ, Hickey PR. Pain and its effects in the human neonate and fetus. New England Journal of Medicine 1987; 317(21): 1321–1329.

[5] Anand KJ. Consciousness, cortical function, and pain perception in nonverbal humans. Behavioral and Brain Sciences 2007; 30(1): 82–83.

[6] Lowery CL, Hardman MP, Manning N, Clancy B, Whit Hall R, Anand KJS. Neurodevelopmental changes of fetal pain. Seminars in Perinatology 2007; 31(5): 275–282.

[7] Brusseau RR, Mashour GA. Subcortical consciousness: Implications for fetal anesthesia and analgesia. Behavioral and Brain Sciences 2007; 30(01): 86–87.

[8] Derbyshire SWG. Controversy: Can fetuses feel pain? BMJ: British Medical Journal 2006; 332(7546): 909–912.

[9] Derbyshire SWG. Fetal analgesia: where are we now? Future Neurology 2012; 7(4): 367–369.

[10] Szawarski Z. Do fetuses feel pain? Probably no pain in the absence of “self”. BMJ: British Medical Journal 1996; 313(7060): 796–797.

[11] Papineau D. Thinking about consciousness. Oxford: Oxford University Press; 2002.

[12] Perl ER. Pain mechanisms: a commentary on concepts and issues. Progress in Neurobiology 2011; 94(1): 20–38.

Abstract. Functionalism of robot pain claims that what is definitive of robot pain is functional role, defined as the causal relations pain has to noxious stimuli, behavior and other subjective states. Here, I propose that the only way to theorize role-functionalism of robot pain is in terms of type-identity theory. I argue that what makes a state pain for a neuro-robot at a time is the functional role it has in the robot at the time, and this state is type identical to a specific circuit state. Support from an experimental study shows that if the neural network that controls a robot includes a specific ’emotion circuit’, physical damage to the robot will cause the disposition to avoid movement, thereby enhancing fitness, compared to robots without the circuit. Thus, pain for a robot at a time is type identical to a specific circuit state.


There is broad agreement among researchers that the minimal necessary neural pathways for pain are in the human fetus by 24 weeks gestation [1, for review]. However, some argue that the fetus can feel pain earlier than 24 weeks because pain can be enabled by subcortical brain structures [2,3,4,5]. Other researchers argue that the fetus cannot feel pain at any stage of gestation because the fetus is sustained in a state of unconsciousness [6]. Finally, others argue that the fetus cannot feel pain at any stage because the fetus lacks the conceptual postnatal development necessary for pain [7,8,9]. If a behavioral and neural reaction to a noxious stimulus is considered sufficient for pain then pain is possible from 24 weeks and probably much earlier. If a conceptual subjectivity is considered necessary for pain, however, then pain is not possible at any gestational age. According to [1], much of the disagreement concerning fetal pain rests on the understanding of key terms such as ‘wakefulness’, ‘conscious’ and ‘pain’.

A motivation for thinking conceptual subjectivity is necessary for pain is the idea that subjective experiences such as pain cannot be reduced to or identified with the objective features of the brain [7,8,9]. All pains are personal experiences and therefore entirely subjective; all brain states are physical events and therefore entirely objective. There is a fundamental divergence between pain and the brain. Thus, pain cannot be in the brain. The basic argument:

1. Pain experiences are subjective.

2. Brain events are objective.

Therefore, since pain experiences and brain events fundamentally diverge,

3. Pain experiences are not identical to brain events.

Is this a good argument? Let’s examine its first premise – ‘pain experiences are subjective.’ On a reasonable interpretation of its meaning, to state that ‘pain experiences are subjective’ is to state that pain experiences are knowable by introspection. However, since brain events are not knowable by introspection, pain experiences cannot be identical to brain events. Here is the argument:

1. Pain experiences are knowable to me by introspection.

2. Brain events are not knowable to me by introspection.

Therefore, since pain experiences and brain events fundamentally diverge,

3. My pain experiences are not identical to any of my brain events.

Once the argument is represented in this form, it is clear that it is fallacious. This can be clearly observed if we compare the argument with the following example:

1. Ibuprofen is known to me to relieve pain.

2. Iso-butyl-propanoic-phenolic acid is not known by me to relieve pain.

Therefore, since ibuprofen and iso-butyl-propanoic-phenolic acid fundamentally diverge,

3. Ibuprofen cannot be identical to iso-butyl-propanoic-phenolic acid.

The premises in the example are true, but the conclusion is known to be false. The argument is fallacious because the core idea of the argument – ‘fundamental divergence’ – makes an erroneous assumption; namely, it assumes that a thing must be known by somebody. But the property ‘being known by somebody’ is not a necessary feature of any thing, much less a property that might establish its identity or non-identity with some thing otherwise known. The truth of the premises may be due to nothing else but my ignorance of what turns out to be identical with what. These considerations challenge the assumed epistemology in the conceptual subjectivity view of pain.

They also challenge the related claim made by proponents of conceptual subjectivity that any description of a pain given in objective scientific terms will necessarily always exclude the personal experience of that pain [7,8,9]. The argument made here is by now familiar: since descriptions of pain in personal subjective terms are different from scientific descriptions of pain, it follows that a pain and its private subjectivity cannot be identical with a brain event and its public objectivity. Only persons can feel pain – brain cells and protein channels can’t. Clearly, the argument begs the issue in question: whether or not the subjective features of a pain I personally experience are identical with some objective features of my brain that might be discovered by neuroscience is precisely the question at issue [10,11].

Besides, in order to understand a scientific explanation of pain, neuroscience does not require of a person that he both understands the explanation and feels pain as a condition of understanding. Neuroscience aims to explain pain, that is its main purpose. Too much is demanded of neuroscience if, in addition to formulating an explanation of pain, it is meant to re-create pain in somebody as a requirement of understanding [10,11]. This expectation is therefore much too strong.


[1] Derbyshire SWG, Raja A. (2011). On the development of painful experience.Journal of Consciousness Studies18, 9–10.

[2] Anand KJ, Hickey PR. (1987). Pain and its effects in the human neonate and fetus. New England Journal of Medicine, 317(21), 1321–1329.

[3] Anand KJ. (2007). Consciousness, cortical function, and pain perception in nonverbal humans. Behavioral and Brain Sciences30(1), 82–83.

[4] Lowery CL, Hardman MP, Manning N, Clancy B, Whit Hall R, Anand KJS. (2007). Neurodevelopmental changes of fetal pain. In Seminars in perinatology, 31(5), 275–282.

[5] Merker B. (2007). Consciousness without a cerebral cortex, a challenge
for neuroscience and medicine. Target article with peer commentary and author’s response. Behavioral and Brain Sciences, 30, 63–134.

[6] Mellor DJ, Diesch TJ, Gunn AJ, Bennet L. (2005). The importance of ‘awareness’ for understanding fetal pain. Brain research reviews49(3), 455-471.

[7] Derbyshire SWG. (2012). Fetal analgesia: where are we now? Future Neurology7(4), 367-369.

[8] Derbyshire SWG. (2006). Controversy: Can fetuses feel pain? BMJ: British Medical Journal332(7546), 909.

[9] Szawarski Z. (1996). Do fetuses feel pain? Probably no pain in the absence of “self”. BMJ: British Medical Journal313(7060), 796–797. 

[10] Churchland PS. (2002). Brain-wise: V: Studies in Neurophilosophy. MIT press.

[11] van Rysewyk S. (2013). Pain is Mechanism. PhD Dissertation, University of Tasmania.

Call for Chapters: Machine Medical Ethics, Edited Collection

You are warmly invited to submit your research chapter for possible inclusion in an edited collection entitled Machine Medical Ethics. Target publication date: 2014.

The new field of Artificial Intelligence called Machine Ethics is concerned with ensuring that the behaviour of machines towards human users and other machines is ethical. This unique edited collection aims to provide an interdisciplinary platform for researchers in this field to present new research and developments in Machine Medical Ethics. Areas of interest for this edited collection include, but are not limited to, the following topics:

Foundational Concepts

What is medical ethics?

What is machine medical ethics?

What are the consequences of creating or not creating ethical medical machines?

Can medical machines be autonomous?

Ought medical machines to operate autonomously, or under (complete or partial) human physician control?

Theories of Machine Medical Ethics

What theories of machine medical ethics are most theoretically plausible and most empirically supported?

Ought machine medical ethics be rule-based (top-down), case- based (bottom-up), or a hybrid view of both top-down and bottom-up?

Is an interdisciplinary approach suited to designing a machine medical ethical theory? (e.g., collaboration between philosophy, psychology, AI, computational neuroscience…)

Medical Machine Training

What does ethical training for medical machines consist in: ethical principles, ethical theories, or ethical skills? Is a hybrid approach best?

What training regimes currently tested and/or used are most successful?

Can ethically trained medical machines become unethical?

Can a medical machine learn empathy (caring) and skills relevant to the patient-physician relationship?

Can a medical machine learn to give an apology for a medical error?

Ought medical machines to be trained to detect and respond to patient embarrassment and/or issues of patient privacy? What social norms are relevant for training?

Ought medical machines to be trained to show sensitivity to gender, cultural and age-differences?

Ought machines to teach medicine and medical ethics to human medical students?

Patient-Machine-Physician Relationship

What role ought imitation or mimicry to play in the patient-machine-physician relationship?

What role ought empathy or caring to play in the patient-machine-physician relationship?

What skills are necessary to maintain a good patient-machine-physician relationship?

Ought medical machines be able to detect patient fakery and malingering?

Under what conditions ought medical machines to operate with a nurse?

In what circumstances should a machine physician consult with human or other machine physicians regarding patient assessment or diagnosis?

Medical Machine Physical Appearance

Is there a correlation between physical appearance and physician trustworthiness?

Ought medical machines to appear human or non-human?

Is a highly plastic human-like face essential to medical machines? Or, is a static face sufficient?

What specific morphological facial features ought medical machines to have?

Ought medical machines to be gendered or androgynous?

Ought medical machines to possess a human-like body with mobile limbs?

What vocal characteristics ought medical machines to have?

As a new field, the target audiences are expected to be from the scientists, researchers, and practitioners working in the field of machine ethics and medical ethics. The target audience will also include various stakeholders, like academics, research institutes, and individuals interested in this field, and the huge audience in the public sector comprising health service providers, government agencies, ministries, education institutions, social service providers and other types of government, commercial and not-for-profit agencies.

Please indicate your intention to submit your full paper by email to the editor who emails you with the title of the paper, authors, and abstract. The full manuscript, as PDF file, should be emailed to that same editor by the deadline indicated below. Authoring guidelines will be mailed to you after we receive your letter of intent.

Please feel free to contact the editors, Simon van Rysewyk or Dr. Matthijs Pontier, if you have any questions or concerns. Many thanks!


Intent to Submit: June 10, 2013

Full Version: October 20, 2013

Decision Date: November 10, 2013

Final Version: December 31, 2013


Simon van Rysewyk

School of Humanities
University of Tasmania
Private Bag 41
Tasmania 7001


Dr. Matthijs Pontier

Post-Doctoral Researcher
The Centre for Advanced Media Research (CAMeRA)
Vrije Universiteit Amsterdam
Buitenveldertselaan 3
1081 HV Amsterdam
The Netherlands


Come tomorrow, my #SciFund project will go online with other projects in Round 2 of the #SciFund Challenge!
What is the #SciFund Challenge?
#SciFund Challenge is about raising funds for important and interesting science projects.
It’s called crowdfunding.
In 2011, Round 1 of the #SciFund Challenge raised over US$76,000 for science projects!
The participating scientists included students, professors and independent researchers.
How does it work?
Each participating scientist creates a project, and a fundraising target.
Next, each scientist promotes their project online through social media, personal blogs,
YouTube, #Scifund blogs and #Scifund website, from May 1 to May 31, 2012.
A big part of a crowdfunding campaign is a 2-3 minute video advertising the project.
I’ll wrap-up my video tomorrow, and post it on RocketHub (the online host of #SciFund Round 2).
Next, I’ll invite you all to have a look at my excellent project page on RocketHub.
Then, you can decide whether I have convinced you or not!
What is my #SciFund project?
It is my PhD project: ‘The face of pain’. Intrigued yet?
Some of the questions I am looking at are:
What differentiates pain faces from emotion faces?
What facial features communicate the most information in a pain face?
How do observers fixate on, react to, and interpret faces of pain?
These aren’t merely interesting questions.
There is potential for direct clinical application.
How? The more clearly we define the attributes that make pain a unique expression,
the better equipped we are to assess and manage pain in patients.
This is especially critical in patients who lack verbal expressions or language
(e.g., patients with verbal disorders, dementia, autism, neonates, infants).
Clinicians rely heavily on non-verbal expressions of pain (e.g., facial expression) in such cases.
What is my fundraising target?
My target is US$1000. 
This target is very achievable given a bit of work on my part during May,
and your outstanding generosity and vision!
This target will fund costs related to conducting my experiments online (it ain’t cheap!).
Oh, and did I mention there are rewards for donators?
I’m not kidding around.
I’ll reveal my rewards when my project is online tomorrow!
Now, if you don’t wish to support my project, that’s completely OK.
But, I do ask of you one small thing: spread the word about my #SciFund project 
through your social network.
How is that? 
Muchas gracias, mi buen amigo!
What happens next?
I will post the link to my project-page on Rocket Hub on this blog!

A report is here.

patient-before-surgery.jpg (384×512)

Patient before surgery

patient-after-surgery.jpg (408×512)

Patient after surgery

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 336 other followers

Simon van Rysewyk

Blog Stats

  • 16,898 hits
free counters